
 
 
 
 
 
 

Wavelet-Based Monitoring for Disease Outbreaks and  
 

Bioterrorism: Methods and Challenges 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bernard L. Dillard 
 

Department of Science and Mathematics 
 

Fashion Institute of Technology 
 

New York, NY  10001 
 

dillard@fitnyc.edu 
 
 
 
 
 

Galit Shmueli 
 

Department of Decision, Operations & Information Technologies 
 

and The Center for Health Information and Decision Systems 
 

Robert H. Smith School of Business 
 

University of Maryland 
 

College Park, MD  20742 
 

gshmueli@rhsmith.umd.edu 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

1. INTRODUCTION 

Modern syndromic data are unique in that they harbor several important 

characteristics.  Of primary significance is the fact that they are available at a 

very frequent rate, such as daily and even hourly.  This is due to real-time 

collection (e.g. – via UPC codes), electronic reporting, and transfer.  Such data also 

tend to be seasonal.  For example, sales of cough medication tend to fluctuate between 

seasons.  Winter sales are different than those in the summer, and peak sales occur 

around holidays.  In the case of emergency room visits, arrival patterns vary 

according to the season.  Related to seasonality is the issue of correlation to 

irrelevant variables.  This suggests that some variables have some dependency on 

other, less interesting variables.  For example, when stores close, overall sales 

(including grocery sales) decrease.  Since people may stock up on certain items on 

weekends, total sales (including grocery sales) tend to increase.  Finally, different 

series even within the same data source can vary greatly in their structure, thereby 

requiring a very flexible monitoring system. 

Classical methods for monitoring single and multiple processes for detecting 

abnormal behavior have been around for at least half of a century.  Historically, 

public health facilities relied on the monitoring of traditional data streams in their 

effort to gain useful information as it related to the presence of diseases.  These 

types of traditional data in which the outbreak was confirmed were in the form of 

death rates, laboratory results, and emergency room diagnoses.  The use of these 

traditional surveillance systems became limited greatly by delays in getting and 

analyzing the data and by delays from the waiting period needed for reports to be 

confirmed by testing [1].  Rather than focus primarily on these types of data, it 

became more advantageous to rely on using data that would house the same information 

as traditional data streams but would possibly detect the footprint of the disease 

outbreak earlier.  This, then, is what we refer to as syndromic data. 

Monitoring these non-traditional data streams has proven useful in the quest to 

detect early signs of a disease outbreak.  Several examples of this syndromic data 

include pharmacy medication sales, hits on the world wide web of medical websites 

(like WebMD), grocery sales of over-the-counter (OTC) medications and other health-

related products, 911 calls, nurse hotlines, and chief complaints [2].  Many 

researchers have agreed that monitoring the sales of OTC grocery sales can indirectly 

provide invaluable information concerning the tracking of certain bioagents like 

anthrax used in biological warfare [3].  The logic behind such a revelation is 

twofold:  1) Non-traditional data sources, such as grocery sales and OTC medication, 
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contain an early footprint of an anthrax-based attack or disease outbreak; and, 2) 

People who feel sick are more apt to seek self-treatment before approaching the 

medical system [2]. 

These syndromic data are also non-stationary and noisy.  These characteristics 

make wavelet-based statistical monitoring methods especially ideal.  The non-

stationarity of the data suggests that the behavior of the series changes over time.  

The mean, variance, and auto-covariance of the series do not remain constant 

throughout the observed time window [2].  The noisiness suggests that some degree of 

smoothing is required.  Wavelet methods are also advantageous when the nature of the 

anomaly is unknown.  In many syndromic data, it is unknown how a disease outbreak will 

manifest itself.  For instance, how would an anthrax attack affect sales of cough 

medication?  Or how would a smallpox outbreak influence the arrival patterns of ER 

visits? 

In Section 2, we offer a brief history of wavelets, explain why they are more 

advantageous, and introduce the discrete wavelet transform.  Section 3 introduces a 

set of syndromic data and applies the univariate wavelet-based technique called 

Multiscale Statistical Process Control, while Section 4 discusses and illustrates the 

wavelet-based multivariate extension or Multiscale Principal Components Analysis.  

Within Sections 3 and 4, we address the issue of multiple testing in order to guard 

against an increased false alarm rate.  Section 5 highlights major results, while  

Section 6 offers final discussion on the proposed methods and explores a few 

challenges that remain. 

 

2. WAVELETS AT WAR 

The most well-known and widely used monitoring tools in epidemiology as well as 

other areas have been Shewhart, cumulative sum (CuSum), and exponentially weighted 

moving average (EWMA) control charts.  Some have been generalized to multiple 

processes or adjusted for serial correlation.  Most of them, however, assume 

stationarity of the series and are efficient in detecting abnormalities only of a 

certain nature.  The advent of wavelets has been able to address these limitations and 

overcome monitoring hindrances experienced by many of the mentioned classical 

monitoring schemes.  Herein, we discuss new wavelet-based monitoring techniques that 

are more flexible and make less structural assumptions.   
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2.1 A Brief History of Wavelets 

Historically, wavelets have been touted as the quintessential mathematical tool 

for image compression.  In computer science circles, they have been lauded for their 

ability to flexibly adapt to shapes and patterns of the original image and re-

construct them using minimal space.  Through a tag-team effort of using high- and low-

pass filters, wavelets produce snapshots of images while minimizing pixilated space.  

Because wavelets possess such a great ability of stretching and shrinking, they enjoy 

confronting the task of duplicating complex pictures.  Over the last decade or so, the 

utility of wavelets has widened from this well-known idea of image compression to the 

relatively new area of anomaly detection.  Even though several scholars have suggested 

that these mathematical tools may provide promising results for such detection, hardly 

any literature exists in which these methods are examined alongside age-old, more 

traditional approaches for detecting out-of-control processes.  Simply said, since 

wavelets possess this uncanny ability to adapt and flex, they become ideal “spies” on 

the hunt for unknown aberrant behavior in a time series.  Of course, classical 

approaches to modeling techniques for detecting anomalies center on autoregressive 

moving-average (ARMA) models and Fourier analysis.   

Few strides have been made to employ wavelets in the use of monitoring for 

anomalous detection in health care or biosurveillance.  Even though authors have 

suggested that these mathematical tools may provide promising results for such 

monitoring, hardly any literature exists in which these methods are examined alongside 

age-old, more traditional approaches for detecting out-of-control processes.  For 

example, Goldenberg and Zhang use wavelets to forecast and to de-noise data, 

respectively [3, 4].  Shmueli seeks to address some of the challenges related to using 

wavelet transforms and their use in detecting outbreaks, giving special attention to 

issues associated with multiple testing and reducing false alarm rates [5]. 

Shmueli admits, however, that there remain some untapped methods for wavelet-based 

monitoring in other fields which remain to be explored in biosurveillance [5].  One of 

the fields she alludes to is chemical engineering, in which Aradyhe develops wavelet-

based monitoring for fields other than bioterrorism [6].  We investigate these methods 

for monitoring for biosurveillance and disease outbreak.  It is against this backdrop 

of meager research and the modern-day seriousness of bioterrorism and disease outbreak 

(including the H1N1 virus) that we apply these newer methods to syndromic data. 
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2.2 Why Wavelets Work 

Wavelets are mathematical functions that break data down into different frequency 

components and that analyze each of the frequency components with a scale-matched 

resolution [7].  They are localized functions, continuous in time, that drop to zero 

instead of oscillating forever [8].  Since wavelets are able to decorrelate 

autocorrelated data, the wavelet decomposition method yields an elegant and more 

suitable way of representing and monitoring biosurveillance data over traditional 

monitoring techniques [9].  Wavelet methods are highly useful in practice because data 

from most of the processes are multiscale in nature due to events occurring at 

different locations and with different localization in time and frequency; stochastic 

processes whose energy or power spectrum changes with time and/or frequency, and; 

variables measured at different sampling rates [10].  Since our goal is to monitor the 

series over time in order to rapidly detect an outbreak for which the anomaly pattern 

is unknown, it is most important to know the timings of the different frequencies.  

Wavelets have the capability of identifying information regarding frequencies in the 

data, while capturing the information regarding when notable phenomena transpire. 

A key reason for choosing wavelet analysis over other classical techniques is that 

wavelets overcome the stationarity assumption that is the backbone of methods such as 

autoregressive moving-average (ARIMA) models.  Since the data is frequently recorded, 

it becomes preferable for the purpose of rapid detection; however, data that is 

recorded too frequently are too noisy and requires more attention [2].  Essentially, 

wavelet analysis becomes more suitable than these traditional methods for several 

reasons: 

1. Wavelet analysis allows us to analyze a series while simultaneously preserving 

 temporal and spatial information; other key methods either preserve temporal or 

 spatial information, not both. 

2. Wavelet analysis is more flexible in its monitoring of frequent data (i.e. – 

 data that is daily, hourly, etc.) 

3. Wavelet analysis requires the least tweaking from the non-statistician user; 

 current software makes for a user-friendly environment to aid in the use of 

 wavelet analysis. 

2.3 The One-Dimensional Discrete Wavelet Transform  

Modeling frequent data therefore warrant a very flexible method such as using the 

one-dimensional discrete wavelet transform (DWT).  By definition, the DWT is described 

by equation (1): 
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,    (1) 

 

where  is the set of transformed wavelet coefficients at the appropriate 

approximation and detail levels, while  represents the data points of the original 

series at time .  We express  as the basic wavelet function onto which the signal 

is analyzed.  When stretched or shrunk,  becomes , where “a” is the dilation 

parameter and “b” is the translation parameter.   

In this article, the basic wavelet is stretched and shrunk to the point in which 

it has become the Haar wavelet.  The DWT serves to decompose the original series into 

a linear combination of detail coefficients (d1 – dL) and the finest approximation 

coefficients (aL), where L represents the number of decomposition levels used in the 

transform.  An L-level DWT requires at least 2L data points.  Decomposition beyond 

this level creates “holes” in the analysis and sacrifices accuracy of the results.  

The DWT is very useful in analyzing data in such multiscale form and better captures 

the features of such data with a much lower need for teasing.  Finally, it is 

preferable to employ an automated system, which requires the least tweaking from the 

non-statistician user, and in that respect, the DWT is preferable to Fourier and ARIMA 

methods. 

2.4 The Decomposition 

The method begins with one series, which is decomposed into multiple uncorrelated 

scales using a wavelet function.  This wavelet function turns the information of a 

signal into a set of uncorrelated coefficients at multiple scales, which are used to 

reconstruct the original signal [12].  In addition to choosing which wavelet is 

appropriate for the analysis, the researcher must determine how many scales (L) of 

analysis are suitable.  The series is then decomposed into two sets of L scales.  The 

first contains the approximation coefficients, which capture low frequencies and crude 

trends of the original data series.  The second contains the detail coefficients, 

which correspond to high frequencies and capture more detailed information.  Figure 1 

depicts a general wavelet decomposition tree, showing the relations between the 

original signal, the wavelet approximations, and the details, spanning across 

decomposition levels.   

 



7 
 

 

Figure 1:  Wavelet Decomposition Tree.  At each time point, the sum of the detail 
coefficients and last approximation level (D1 +D2 + D3 + A3) equals the original signal 
(for L = 3). 

 

From a methodological point of view, DWT techniques offer an analysis of the 

series as a sum of orthogonal signals corresponding to different time scales.  From a 

more practical viewpoint, from the multitude of wavelet functions that exist, our 

choice of wavelet in the DWT is based on the interplay between a specific analysis 

goal (signal processing, monitoring, etc) and the properties needed in a wavelet 

filter to achieve that goal [8]. 

Figure 2 illustrates a five-level DWT of a data series of pediatric 

gastrointestinal (GI) free-text chief complaints (cc) from April 10, 1998 through May 

31, 2001.  These complaints are a type of data collected during emergency room visits 

for which an admissions clerk records a patient's status on arrival to the facility; 

since the data entry is automated, they become amenable to typical biosurveillance 

systems [11].  The data shows standardized daily counts of complaints in four counties 

in Utah, in which 80% of the state's population lives [11].  In this DWT, we include 

five levels of decomposition (L=5).  So detail coefficients (noted as d1 – d5), and 

the finest approximation coefficients (noted as a5) add to produce the original series 

at each particular time point.  In this case, level a5 captures the overall trend of 

the original series, producing the general up-and-down pattern over time that exists 

in the data.  In levels d1-d3, the wavelets do well in capturing the peak 

(standardized) GI cc count (denoted by A), which has a value of 4.35 and occurs on 

January 7, 2001.  Essentially, this high peak manifests itself at multiple scales, 
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which highlights the wavelet's strength of detecting pertinent information at varying 

decomposition levels. 

 

 

Figure 2:  DWT of pediatric gastrointestinal (GI) free-text chief complaints series 
(Haar wavelet).  The GI series is denoted by s, and the d’s and last approximation 
level signify detail and approximation scales, respectively; here, L = 5. 
 

 

3.  MULTISCALE STATISTICAL PROCESS CONTROL 

In this section, we present a detection algorithm for univariate time series that 

was made popular by Bakshi.  The method, multiscale statistical process control 

(MSSPC), combines DWT and Shewhart control charts and was developed in the field of 

chemical engineering as work related to aberration detection [6, 10].  This method 

also becomes advantageous as a monitoring technique for biosurveillance or disease 

outbreak because the syndromic data analyzed possess the same characteristics as those 

stated in Section 1 (noisy, non-stationary, etc).  This monitoring approach seeks to 

detect abnormal events at multiple scales of the series as relatively large 
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coefficients; the idea is to decompose the signal using DWT and then to monitor the 

coefficients at each scale separately using a Shewhart chart.  The original series is 

then reconstructed from all the coefficients that exceed the thresholds at the 

different scales, and another Shewhart chart is used to monitor this reconstructed 

series.  This process is illustrated in Figure 3. 

 

Figure 3:  MSSPC Methodology 

 
 

3.1 Scale-Specific Monitoring 

Shewhart control charts are used for each level separately in order to detect 

abnormal coefficients relative to their scale.  The center line and control limits are 

computed from the scale's expected value ( ) and its standard deviation ( ), where  

is the scale.  For the detail coefficients, , whereas for the approximation,  is 

equal to the mean of the series.  The ’s are estimated from the coefficients at 

scale .  The upper control limit (UCL) and lower control limit (LCL) are then .  

This ensures that we maintain a 0.27% false alarm rate at each scale.  Applying 

separate control charts at each scale permits identification and selection of the 

scales or frequency bands that appear to contain abnormal behavior [6].  The UCLs and 

LCLs of the Shewhart chart at each detail level and finest approximation are key in 
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that any coefficients that exceed these limits become potential points of alarm in our 

monitoring scheme. 

3.2 Series Reconstruction and Alarm Detection 

The next step is to reconstruct the series based on the coefficients at each scale 

which lie outside of the detection limits.  In the reconstruction, all detail and 

approximation coefficients that did not exceed their Shewhart limits are zeroed out 

while those that exceed the limits are maintained.  The reconstructed signal is 

therefore a series of mostly zeroes and some alarm values.  The last step is to 

monitor the reconstructed series using a Shewhart chart.  The limits of this chart are 

based on the mean of the series and on the standard deviations only of the levels in 

which there was an alarm.  The reconstructed series signals at time  only for points 

in the reconstructed series that exceed the control limits.  This last step of 

monitoring the reconstructed signal is crucial for extracting the relevant features 

and for quicker detection of any anomalous behavior in the series [6, 10]. 

3.3 False Discovery Rate Correction 

Since MSSPC includes multiple control charts in parallel, it suffers from an 

inflated false alarm rate arising from multiple testing.  In other words, although the 

false-alarm rate at each scale is small, the cumulative rate can be very high.  In 

fact, since the scales are orthogonal, the  false alarm rate  accumulates to 

.  Classical multiple-comparison procedures such as Bonferroni aim to 

control the false alarm rate probability in families of comparisons under simultaneous 

consideration [13].  However, such methods tend to be too conservative in their 

representation of the false alarm rate.  A more powerful method for handling multiple 

testing is by controlling the false discovery rate (FDR) [13].  By definition, the FDR 

is the expected proportion of false alarms among all of the alarms.  We apply an FDR 

correction to MSSPC (FDR-MSSPC) to account for the  tests that take place at every 

time .  Essentially, this lowers the overall false alarm rate. 

3.4 An Application of FDR-MSSPC to the Data 

Figure 4 shows the final stage of FDR-MSSPC applied to the GI cc series.  Using a 

no-outbreak period of April 10, 1998 to November 15, 1998, the detection algorithm 

displays three (3) major outbreak periods, one for each year.  The three major 

outbreaks manifest during the following periods:  (1) December 22, 1998 - February 7, 

1999; (2) December 9, 1999 - March 13, 2000; (3) November 25, 2000 - February 28, 
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2001.  Within these three major yearly GI cc outbreaks, it is important to note that 

these ranges incorporate days that, for the most part, are consecutive.   

 

Figure 4:  Reconstruction Stage of FDR-MSSPC applied to Gastrointestinal Chief 
Complaint Series.  Panel (a) represents the original series.  Dotted lines summarize 
major outbreak detection periods for each year.  Panel (b)  represents the 
reconstructed series in the form of dots.  Points outside of their own detection 
limits become alarm values and contribute to the range in (a).  Both panels display 
the same information. 

 
 

There exist, however, periods in the ranges where some gaps surface but only for 

small time periods.  For example, within the first outbreak period (December 22, 1998 

- February 7, 1999), the detection dates produced by the algorithm include January 5th 

then January 7th then January 9th (as opposed to all dates between January 5th and 

January 9th).  It makes sense, however, to include the range of January 5th - 9th in 

the detection range since detection dates are only separated by a day.  After February 

7, 1999, the detection date jumps to December 9, 1999, which clearly cannot be 

considered as part of the first outbreak period.  The largest detection gap within 

either detection range occurs in the third outbreak and spans 5 days (February 14 - 

19, 2000). 
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4.  MULTISCALE PRINCIPAL COMPONENTS ANALYSIS 

In many cases, there are multiple time series to be monitored.  In practice, there 

is a tendency to monitor the series separately using univariate methods.  Such 

methods, however, cannot capture the interrelations between the different series and 

abnormalities which might occur in these relationships.  Further, abnormalities in 

multiple series can go undetected if each series is observed separately.  Thus, the 

information contained in the multivariate nature of the data can be crucial for rapid 

detection and low false alarm rates.  Hence, we discuss a wavelet-based method for 

multivariate monitoring. This detection algorithm, also developed by Bakshi, is an 

extension of MSSPC called Multiscale Principal Components Analysis or MSPCA [10]. 

This approach toward multivariate monitoring, which combines the idea of PCA and 

wavelets, is based on reducing the dimension of the data and then using univariate 

charts to monitor the reduced series and the residuals [14].  The MSPCA algorithm 

consists of decomposing each series using wavelet decomposition; PCA is then applied 

separately to coefficients from all series at each scale in order to reduce the 

dimensionality.  As in MSSPC, with every incoming observation, the process is repeated 

in a roll-forward manner.  Figure 5 provides a diagrammatic representation of MSPCA. 

 

 

 

 

Figure 5:  MSPCA Methodology 

 

 



13 
 
4.1 The Decomposition 

The input into MSPCA is a vector of s series.  At first, each of the series is 

decomposed using wavelets.  Next, principal components analysis is performed on each 

vector of the detail scales and the finest approximation for all series.  The goal is 

to represent the s sets of coefficients at each scale in lower dimension.  Assuming 

that the group of series is not independent, it should be possible to capture their 

information in a dimension lower than s.  PCA transforms the s-dimensional data into s 

principal components, which are linear transformations of the original data that are 

not correlated.  Usually a small number of principal components (PCs) captures the 

majority of information concerning variabililty in the original data.  The next step 

is to separate the PCs into primary and residual PCs.  The first p PCs contain primary 

information, while the remaining s–p PCs house the residual information.  There are 

several criteria for determining how many PCs are primary.  One is according to the 

percentage of information they jointly contain of the total information.  Other 

thresholding techniques for selecting the appropriate number of components are the 

scree test plots and parallel analysis [10]. 

4.2  and  plots 

The cluster of primary information from the principal components retained is now 

monitored by a  chart, whereas the cluster of residual information is monitored by a 

 chart.  The points on these plots are the sum of the standardized scores.  These two 

sets of plots require the component scores in addition to the corresponding 

eigenvalues at each level and are summarized in equations (2) and (3): 

(2) 

                                                               (3) 

where  and  are the sum of squares of the selected scores ( ) scaled by the 

respective eigenvalue ( ) computed from the data at the th time point and th level 

[10];  is the last principal component retained in the Hotelling-  ( ) chart, and  

is the total number of series and total number of principal components. 
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4.3 The Detection Limits 

Since the monitored statistic is a sum of squared values and thus always non-

negative, we have that .  The UCLs for the  charts at each level are given by 

 values, while the UCLs for the  charts at each level are given by  

values.  A statistically significant change at a certain scale is indicated if either 

the  or the  chart at that scale triggers an alarm.  Scales for which values do not 

exceed the  limits are discarded because this suggests that the information at those 

 and  levels contain no relevant information concerning abnormal operation of the 

monitored process. 

4.4 Reconstruction and FDR 

Reconstruction of the series is computed only from the details and approximation 

coefficients whose values exceed the UCL limits.  Though there are still  series in 

this reconstruction, they do not contain the extraneous information found in the 

decomposition levels stated earlier.  Finally, this new reconstructed series vector is 

subject again to PCA, and its components are again separated into primary and residual 

clusters.  A final set of  and  charts is used to monitor the reconstructed series 

with the same  thresholds stated previously.  This last step of selecting the scales 

that indicate significant events, reconstructing the signal, and computing the scores 

and residuals improves the speed of detecting abnormal operation and reduces false 

alarms [10]. 

As in MSSPC, it is also needful to address the issue of multiple testing and 

related false alarm rates in MSPCA.  At each time , there are  simultaneous 

charts, thereby creating a multiple testing situation.  The overall false alarm rate 

is therefore inflated.  We again suggest improving this by using an FDR correction to 

MSPCA (FDR-MSPCA).  The FDR correction lowers the overall false alarm rate that would 

otherwise be . 

4.5 An Application of FDR-MSPCA to the Data 

For this application, we consider four standardized pediatric series for 

multivariate monitoring.  The first series is the gastrointestinal (GI) cc series, 

monitored in Section 2.  The other three are as follows:  a hospital admissions series 

for GI illness for the same group, and two series (1 for cc and the other for hospital 

admissions) which track respiratory illnesses in the same youth group.  All series are 
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based on the same focus group (children under age 5) living in the four-county Utah 

territory known as the Wasatch Front area [11].  It becomes of interest to examine the 

FDR-MSPCA detection algorithm using these 4 series. 

We again use the no-outbreak period as described before:  from April 10, 1998 - 

November 15, 1998.  In the algorithm, we retain principal components of 75% for 

details and approximation coefficients.  In other words, 75% of the variance from the 

principal components are found in the  chart, while the remaining 25% are plotted as 

residuals in the  chart.  As one might expect, there are 3 primary detection ranges 

existing in the final  and  charts, all of which exceed the  threshold.  The 

 

Figure 6:   and  Graphs for FDR-MSPCA applied to 4 Pediatric Series.  Panel (a) 
represents the  graph.  Panel (b) represents the Q graph.  Dotted lines summarize 
major outbreak detection periods for each year.  Both panels display the maximum 
detection range per detection period. 
 
 

 
three ranges are:  December 25, 1998 - February 1, 1999; November 25, 1999 - March 9, 

2000; and, November 23, 2000 - March 18, 2001.  Figure 6 illustrates these detection 

dates in each panel.  The graph highlights the maximum detection dates for each period 

in each panel.  For example, the second detection range (November 25, 1999 - March 9, 

2000) occurs primarily in the  panel.  A subset of it, however, appears in the  

panel for the same time points.  The dotted lines that appear for this second range 
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for both panels, then, manifests as the maximum range which exists in the  and  

panels for those particular time points. 

Detection ranges in Figure 6 are logical groupings of detection points.  As in 

FDR-MSSPC, each range may not necessarily contain all consecutive time points, but the 

detection clusters are sensible.  For example, the detection range between the second 

detection range and the third detection range is over the course of months (March, 

2000 to November, 2000).  This wide-range span makes it obvious that this gap 

separates detection ranges.  Although the within-range detection varies per detection 

cluster, a natural grouping of detection surfaces.  For example, even though the third 

detection range includes dates which are listed as February 8th and 9th and then as 

the 16th, the overall detection date spread for this range suggests that it is not 

abnormal to include the 16th as a bona fide detection point.  The output indicates 

that the natural stopping point for this range is March 18, 2001, given that the next 

detection point after it occurs two months later. 

 

5.  RESULTS 

Our results are first based on applying the EWMA technique to the data described 

in Section 3.5.  We use a smoothing constant of 0.2 ( ) since this is what the 

authors use in the Ivanov paper [11].  We seek to determine earliest detection dates 

using this monitoring method.  Detailed Matlab results for this method are viewable in 

Figure 7.  Using this method and a 3-sigma limit threshold, we notice that the 

earliest anomaly detection date for each year occurs around Christmas. 

 

Figure 7:  Monitoring Results Using EWMA.  Using , the results show earliest 
detection dates for each year (1998-2000) for the pediatric data (chief complaints). 
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A comparison of these results with those of the two wavelet-based methods (FDR-

MSSPC and FDR-MCPCA) follows.  Table 1 provides a summary snapshot of earliest 

detection dates or points which fall outside of the control limits by method. 

 

Table 1:  Earliest Detection Dates by Method 
 

 
 

Year 

 

EWMA 

 

FDR-MSSPC 

 

FDR-MSPCA 

 

1998 

 

Dec 26 

 

Dec 22 

 

Dec 25 

 

1999 

 

Dec 25 

 

Dec 9 

 

Nov 25 

 

2000 

 

Dec 25 

 

Nov 25 

 

Nov 23 

 

 

For both wavelet-based methods, we have guarded against multiple false alarm 

rates; for MSPCA, detection dates in the table reflect interplay between four 

multivariate syndromic data streams.  With this dataset, both wavelet-based methods 

outperform the more traditional EWMA method.  The two wavelet-based methods provide 

earlier detection dates for each of the three years.  For 1999 and 2000, MSPCA signals 

an alarm an entire month before EWMA does.  These methods become key, as the aim is to 

provide the earliest anomaly detection, which translates into early action in order to 

save lives. 

 

6.  FINAL DISCUSSION AND CURRENT CHALLENGES 

In this treatment, we examine wavelet-based methods for monitoring frequent data 

related to adult and pediatric GI ailments.  MSSPC and MSPCA require less pre-

processing and assumptions than other traditional statistical monitoring methods; 

however, there are a few parameters that must be specified by the modeler. The first 

is the choice of wavelet.  Here, we have used the Haar because this wavelet is useful 

for detecting sudden, abrupt changes in time series.  In biosurveillance, this is 

significant since the goal becomes to monitor sudden spikes in the data, which 
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translates into peaks in sales of syndromic data.  Since the Haar is a wavelet whose 

basic function is to average and subtract consecutive points in the series, it detects 

quickly any two consecutive points that have a large range.  For gradual, slower 

changes in the series, however, a different wavelet would have to be employed in order 

to make monitoring more effective. 

Second, the modeler must specify the number of decomposition levels to be used in 

the analysis.  In our analysis, we use five levels ( ).  In general, the number of 

levels depends on the wavelet used and the amount of notable information captured at 

each level.  The analyst is required to investigate the results and determine  for 

each separate trial. 

We conclude that, when compared to EWMA, wavelet-based detection algorithms 

provide earlier detection of outbreaks for gastrointestinal illness in children less 

than five years old in the Utah counties examined.  In addition, these techniques are 

computationally efficient and user-friendly: the wavelet toolbox in Matlab makes the 

run time of the algorithms a rather quick process, and the output are a nice set of 

graphs and a list of detection dates.  The ease of interpretation of the results and 

speed of the software make these methods particularly useful in public health circles, 

where time is of the essence for early intervention. 

One main obstacle in the advancement of this field is that the relevant literature 

that exists spreads so vastly across varying fields [15].  Although more conferences 

of late have begun to focus on anomaly detection in biosurveillance and in disease 

outbreak, researchers must continually strive to put forth a concerted effort to 

document pinpointed statistical methods used in practice for this relatively new 

field. 

The major challenge with analyzing wavelet-based methods in health care is data 

acquisition.  The pressing question is, "How can statisticians gain more steady access 

to much of the data which is classified as syndromic?" [15].  Unless statisticians are 

somehow associated with researchers in "syndromic laboratories" or have some other 

inroads to inquiring this specific type of data, these cutting-edge methodologies will 

be difficult to explore.  Although it is understandable that confidentiality of such 

data is paramount, there must be a better meeting of the minds between those in 

industry and academia if new methodologies (wavelet-based or otherwise) are to be 

adequately tested. 
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