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Editor’s Letter

Dear Readers,

his issue of CHANCE begins with an article by Jana Asher

on collecting data in challenging settings. In particular,

Asher describes her experiences conducting in-person
survey interviews in East Timor. She gives us personal anecdotes,
practical statistical advice, and an interesting story.

Qi Zheng explains the origins of the Luria-Delbriick distri-
bution and its role in studying evolutionary change in E. coli.
The statistical reasoning underlying the phenomenon has a
connection to the distribution of slot machine returns.

Holmes Finch'’s article, “Using Item Response Theory to
Understand Gender Differences in Opinions on Women in
Politics,” compares and contrasts item response models and
how they describe a data set. The models are explained using
formulas, pictures, and examples.

In Volume 22, Number 4, Jirgen Symanzik proposed a
puzzle based on 10 data points and a set of seven instructions.
Contest winner Stephanie Kovalchik, a graduate student at
UCLA, provided a solution in the form of an amusing letter
and an illustrative graphic. The 10 data values were flight times
in seconds recorded on the log 10 scale of the Space Shuttle
Challenger. Brad Thiessen earned honorable mention for his
graph that included temperature and historical facts.

Bernard Dillard asks, “Who turned out the lights?” We are
all concerned with energy demand and production. Bernard
uses a discrete wavelet transformation to analyze electricity
consumption data measured on a frequent time scale. The fit of
the model is used in multiscale statistical process control. The
ultimate goal is to be able accurately predict points of extreme
energy demand and respond appropriately.

Students in virtually all statistics courses learn something of
least squares estimation when studying prediction of an outcome
from an explanatory variable. Ivo Petras and Igor Podlubny ask
whether there is a reasonable alternative to the default criterion.
“Least circles” is presented for your consideration.

To introduce students to concepts of design of experiments,
instructors sometimes have students conduct taste tests of

Through your email you can get a table of contents notifica-
tion for CHANCE. Go to www.springer.com/mathematics/
probability/journal/ 44 and add your email address in the box
that says “Alerts For This Journal”. The web site also has a
place you can recommend CHANCE to your library.

Mike Larsen,
Executive Editor

various food items, such as gummy bears (see Vol. 23, No. 1).
John Bohannon, Robin Goldstein, and Alexis Herschkowitsch
compared dog food and paté. Really, they did. Read about their
design and the results in this issue.

Ronald Smeltzer shows us an early time-line bar graph by
Philippe Buache depicting the water level of the Seine Riverin
Paris from 1760 to 1766. The picture creatively and effectively
depicts data in print before the advent of the modern printing
techniques that we enjoy today.

Howard Wainer, in his Visual Revelations column, writes
about the graphics in the 2008 National Healthcare Quality
Report and State Snapshots. Usefully and accurately displaying
information graphically is important and challenging. Wainer
makes suggestions for improving some of the displays.

Continuing a series of articles on postage stamps, Peter
Loly and George P. H. Styan discuss stamps issued in sheets
with 5x5 Latin square designs. Color versions of the stamps,
as well as previous articles on stamps, are available online at
www.amstat.org/publications/chance.

Jonathan Berkowitz's puzzle celebrates the 2010 Winter
Olympics, which was held in his home city of Vancouver, Brit-
ish Columbia. The puzzle, titled "Employs Magic,” is actually
five smaller puzzles, each a cryptic five-square of 10 words.

Mark Glickman's Heres to Your Health column will appear in
the next issue.

In other news, the Executive Committee of the ASA met
recently and made decisions that impact CHANCE. First, the
committee voted to continue CHANCE for another three years
in both print and online versions. The next executive editor
will serve 2011-2013. I'll enjoy reading CHANCE in the years
to come. Second, the Executive Committee voted to make the
online version of CHANCE free to the ASAs certified student
members. This is a great development, because students are
potential long-term subscribers and future authors. They also
can be inspired by the significant role that probability and
statistics can play in major studies and activities. [ hope that
other professionals will be motivated to submit articles to
CHANCE to entertain and influence this group.

[ look forward to your suggestions and submissions.

Enjoy the issue!

Mike Larsen
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Hey, Who Turned Off the Lights?

A look at electricity consumption

Bernard Dillard

Scene One: August 14, 2003. New York City (NYC). A bot,
bumid dog day. You've traveled to the city of dreams to see a
matinee of “The Lion King" on Broadway. Horns blowing.
Skyline breathtaking. People scrambling. In the theater, you
settle into your orchestra seats and great singing and dancing
commence. In a magical moment, Rafiki prepares to lift Simba
and Nala's newborn cub as next in line to rule the Pride Lands
when suddenly the power goes out. “Please exit the theater."”

Scene Two: April 12, 2004. Los Angeles International Airport
(LAX). You've finally booked that trip to Hawaii. Sitting
in the coach section in the back of the plane by the restroom,
you calm yourself: The flight will not be that long, and soon
you'll be walking on the black sand at Big Island. You settle
into your seat and close your eyes. "Attention passengers,
there will be a (long) delay due to a power outage in one of
the control towers. Feel free to get up and use the restroom
while we wait.”

cenes like those described above
Swere two of the many that could

have occurred during actual power
outages in the two largest UL.S. cities.
Theories abound as to why those black-
outs happened during those times. One
theory concerning the 2004 blackout
includes a bird sitting on a power line.
But that theory could not account for
simultaneous outages at the Bellagio
Hotel in Las Vegas. Many scholars
maintain these outages had to do more
with an overloading effect of electricity
consumption on a power grid— much
like overuse of power in a home causes
a fuse to blow.

Many posit that, if appropriate
measures had been in place to detect
signs of excessive electricity use, these
power failures could have been avoided
through the use of cutting-edge sta-
tistical monitoring techniques. Hence,
in a time where an understanding of
electricity consumption data and its
relation to other factors are pivotal to
various aspects of American life, includ-
ing national security, proper analysis of
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historical consumption and related data
becomes a key element for successfully
detecting future abnormalities.

The natural way for a statistician to
treat electricity consumption data is as a
time series. Two factors make the analysis
and monitoring tasks nonstandard. First,
like many modern time series, the time
scale on which the data are collected
is frequent. Clearly, the level of data
aggregation depends on the objective of
the application or analysis. In our case,
we are interested in rapid detection of
abnormal behavior in electric consump-
tion or related variables (such as tem-
perature) that could indicate a blackout
is imminent. According to S. Basu and
A. Mukherjee's 1999 INFOCOM article,
"Time Series Models for Internet Traffic,”
traditional time-series models, such as
autoregressive integrated moving aver-
age (ARIMA) models, are not useful for
data measured on such a frequent scale.

The second complicating factor is we
typically monitor not only the electric-
ity consumption series but also a set of
several related time series, out of a belief

the other series might carry information
about consumption. Forexample, we can
monitor the weather and hypothesize
that an extreme wave of cold or hot
weather would lead to increased con-
sumption. Thus, we need a method that
can simultaneously monitor multiple
time series and take into account the
interrelations between the series.

The discrete wavelet transforma-
tion (DWT) can be used to analyze
the features and structure of electricity
consumption and consumption-related
data measured on a frequent time scale.
Multiscale statistical process control
(MSSPC), which combines DWT and
control chart methodology, can be used
to assess abnormalities in individual
time series. These techniques are illus-
trated in this article using data on hourly
electricity consumption and tempera-
tures in New Hampshire from August
29 to September 1, 1997. What can
we learn about the time series using
these methods> What do we anticipate
will be possible with improved
statistical methods?



Electric Consumption and
Temperature Data

It is well known that fluctuation in elec-
tricity consumption depends heavily on
many factors, the most important source
being meteorology, and particularly tem-
perature, as stated in R. Cottet and M.
Smith's 2003 article “Bayesian Modeling
and Forecasting of Intraday Electricity
Load,” that appeared in the Journal of the
American Statistical Association. In most loca-
tions, although the meteorological vari-
ables that affect load can differ according
to region, temperature appears to be by
far the most important meteorological
factor in most locations. Consequently,
we study the consumption behavior using
not only electricity load data but also
relevant temperature data.

The consumption data in this analy-
sis is provided by the New Hampshire
Electric Co. (www.seattlecentral.org/qelp/
sets/042/042.btml# About). It records the
electric consumption over the course of
four days from one delivery point in New
Hampshire at the end of August 1997.
The electricity consumption load was
measured in kilowatts per hour (kwh) and
was recorded over the period of 96 hours:
from 12:52 a.m. on August 29, 1997, to
11:52 p.m. on September 1, 1997. Fig-
ure 1 describes the consumption series
graphically by using a time plot.

The time plot reveals several nota-
ble observations. The most noticeable
pattern is a cyclical fluctuation, which
repeats daily. Typically, early morning
hours are characterized by low energy
consumption, whereas during the late
morning and evening hours, consump-
tion reaches the highest values of the
day. This reflects the levels of activities
of most people during late and evening
hours, which require more electricity
usage. This pattern of usage results in
a daily toothlike structure, which has
been observed in other geographical
areas and at other periods of time, such
as in Harvey and Koopman's “Forecast-
ing Hourly Electricity Demand Using
Time Varying Splines” in the Journal of
the American Statistical Association.

Also, on September 1, the toothlike
structure differs from those of the previ-
ous days. The relative maximum on this
day exceeds that of the previous three
days by far. On this day, the maximum
point occurs at 8:52 p.m. The electricity
consumption load at this time is 2148.12
kwh, which is the highest load of the
entire four days. In addition, the second
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Figure 1. Graph of hourly electric consumption load over time for four days in 1997 in
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Figure 2. Graph of hourly temperatures over time for four days in 1997 in

New Hampshire

highest consumption on that day (tak-
ing place at 10:52 a.m.) is higher than
the highest consumption levels on the
previous three days.

Along with the consumption data,
we consider temperature data for the
same area and during the same time.
We use hourly dry-bulb temperatures
from an hourly observation table from
Mount Washington Regional Airport

(HIE) in Whitefield, New Hampshire,
from August 29 to September 1, 1997.
These data are from the National Cli-
matic Data Center in Asheville, North
Carolina (http://lwf.ncdc.noaa.govloa/ncdc.
html). Temperatures are recorded hourly
from 12:52 a.m. on August 29 until 11:52
p.m. on September 1. Figure 2 providesa
time plot of the temperature data.
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The World of the Wavelet

Meaning "small wave," the term "wavelet” refers to mathematical functions that
break data down into different frequency components and that then analyze
each of the frequency components with a scale-matched resolution. In their
article "Wavelets fo Computer Graphics,” that appeared in IEE Computer Graphics
and Applications, E. J. Stollnitz, T. D. Rose, and D. H. Salesin describe wavelets as
mathematical tools for hierarchically decomposing functions. They essentially
allow functions to be described in terms of a coarse overall shape, along with
details that range from broad to narrow.

Historically, wavelets have been touted as the quintessential mathematical
tool for image compression. In computer science circles, they have been lauded
for their ability to flexibly adapt to shapes and patterns of the original image
and reconstruct them using minimal space. Through a tag-team effort of using
high- and low-pass filters, wavelets produce snapshots of images while minimiz-
ing pixilated space. Because wavelets possess such a great ability to stretch and
shrink, they are able to confront the task of duplicating complex pictures.

Over the last decade or so, the utility of wavelets has widened from this
well-known idea of image compression to the relatively new area of anomaly
detection. Even though several scholars have suggested that these mathematical
tools may provide promising results for such detection, hardly any literature
exists in which these methods are examined alongside age-old, more traditional
approaches for detecting out-of-control processes. Simply said, since wavelets
possess this uncanny ability to adapt and flex, they become ideal “spies” on the
hunt for unknown aberrant behavior in a time series.

Of course, classical approaches to modeling techniques for detecting
anomalies center on autoregressive moving-average (ARMA) models and
Fourier analysis. Wavelet analysis, however, becomes more suitable than these
traditional methods for several reasons:

1. Wavelet analysis allows us to analyze a series while simultaneously
preserving temporal and spatial information. Other key methods either
preserve temporal or spatial information, not both.

2. Wavelet analysis is more flexible in its monitoring of frequent data (data
that is daily, hourly, etc.).

3. Wavelet analysis requires the least tweaking from the nonstatistician user;
current software makes for a user-friendly environment to aid in the use
of wavelet analysis.

The most prominent pattern in the
temperature data is, like the consump-
tion data, a daily cyclical pattern with
highs at late afternoon and lows in the
night. The highest temperature of 75°F
occurs on the third day (August 31) at
2:52 p.m. (All temperatures are Fahr-
enheit.) Interestingly, the lowest tem-
perature of 48° is also on the third day.
These lows occur at 1:52 a.m. and 3:52
a.m. Temperatures during this four-day
period are not unusual for New Hamp-
shire during this time of the year.

The One-Dimensional
Wavelet Transform

The goal of using wavelets is to turn the
information of a signal into coefficients,
which can be manipulated, stored,

30  vOL 23,NO.2, 2010

transmitted, analyzed, or used to
reconstruct the original signal. From a
methodological point of view, wavelet
techniques offer an analysis of the series
as a sum of orthogonal signals corre-
sponding to different time scales.

From a more practical viewpoint,
wavelets are used to extract information
from different types of data like audio
signals, images, and, more recently,
over-the-counter sales and electric-
ity consumption. The choice of wave-
let used in the analysis is based on the
interplay between a specific analysis goal
(e.g., signal processing or monitoring)
and the properties needed in a wave-
let filter to achieve that goal. More on
wavelets is explained in the two sidebars,
"The World of the Wavelet" and “The
Haar Wavelet.”

By definition, the discrete wavelet
transform (DWT) is described by the

mathematical representation:
1 t—b
Wi(ab) = =380 x(P(ED),

where W (a,b) is the set of transformed
wavelet coefficients at the appropriate
approximation and detail levels, while
x(t) represents the data points of the
original series at time t. We express yi(t)
as the basic wavelet function onto which
the signal is analyzed. When stretched

or shrunk, Yi(t) becomes, t/}(%f) where

“a" is the dilation parameter and "b" is
the translation parameter. In the exam-
ple in this paper, the basic wavelet is
stretched or shrunk to the point at
which it has become the Haar wave-
let. “The Haar Wavelet” sidebar pres-
ents more details of the Haar wavelet
function and describes a simple numeri-
cal example.

Essentially, the DWT is a decompo-
sition of the original series into a linear
combination of detail coefficients and
the finest approximation coefficients.
The DWT is very useful in analyzing
data that has been parsed into varying
(or multiscale) levels. Hence, wavelets
become central to the analysis of our
consumption and temperature data.

DWT of the Consumption Data

For the electricity consumption data, the
signal is analyzed using the Haar, which is
the most basic wavelet. Each wavelet, of
course, has its own unique characteristic.
The choice of wavelet depends on a few
things: insight into the data (what each
level captures), the goals of the monitor-
ing experience, and ease of interpretation
and generalization. Decomposing our
consumption time series with the Haar
becomes appropriate because the goal
is to detect any sudden shifts occurring
from back-to-back data points. Since the
Haar's basic makeup is to average con-
secutive data points, its strength is its
ability to pinpoint any huge jumps or dips
in the data stream.

Figure 3, which can be viewed on
page 30, describes the wavelet decom-
position of the electricity consumption
data using the Haar wavelet and five
levels of decomposition. The original
signal of the consumption data is given as
the top graphs on either side, while the
five graphs beneath represent the Haar
wavelet decomposition at each of the five



The Haar Wavelet

The simplest wavelet we can use to decompose a series is the
Haar wavelet. In the case of the Haar, it is useful to note its
mathematical representation. Let {r be defined by:

1, tel0,1/2)
-1, te[l/2,1).
0, tel0,)

w(t) =

When applied to data this wavelet performs a moving
average for pairs of consecutive data points. An example
is given below.

-14
-1 08 5]

0.5 1
t

The Haar mother wavelet, yi(t)

A Simple Discrete Wavelet Transformation
(DWT) Example Using the Haar Wavelet

Consider the simple time series of eight observations: [9 27
30 14 20 32 50 26]. A process of averaging and differenc-
ing is employed to produce key values used in decomposing
the series. Here, we apply the Haar-based DWT for only
two levels to convey the basic process.

The first set of values that arise from applying the Haar
to the series comes about through averaging data pairs. For
example, the average of 9 and 27 gives 18. The average of
30 and 14 gives 22. Summarizing in this vein, we have 18,
22, 26, and 38. These are referred to as the approximation
coefficients of the DWT. This is the first level of averaging.
In signal processing, especially, we would only concern
ourselves with these four approximations, which result in
the notion of “downsampling,” or reducing sample size. For
the purposes of monitoring our data, however, it becomes
appropriate to ignore downsampling and maintain all sam-
ple data points. Our goal is not to compress an image but
to monitor a series. Consequently, at level A1, we preserve
all data information from the original series by averaging
and duplicating these newfound approximations, namely,
[18 18222226 26 38 38].

Orlg. signal and approx. 1 & 2 Orig. signal and dotalls 14 2
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Figure |. Original signal and DWT using the Haar wavelet

We then measure deviations by subtracting the average
of the data pairs from the first data point of the appropriate
pair. For example, the difference between 9 (first point of
first data pair) and 18 (average of first data pair) is —9. The
difference between 30 and 22 (average of second data pair)
is 8. Continuing in this fashion, these deviations are -9, 8,
—6, and 12 and are referred to as "detail coefficients.” At level
D1, these detail values are presented such that, when added
back to their corresponding approximation counterparts,
they give the values for the original series. Hence, the detail
values are [-9 9 8 -8 —6 6 12 —12]. Essentially, we have the
approximation values added to the detail values to yield the
values in the original series. Or, [18 18 222226 26 38 38] +
[-99 8-8-6 612-12]=[927 30 1420 32 50 26]. Figure
1 shows a plot of the original series along with plots of the
approximation (level A1) and detail (level D1) coefficients
for this first-level DWT.

Now, level A1 becomes our "new” signal. We get new
approximations by averaging distinct valuesin A1: (18+22)/2
=20 and (26+38)/2 = 32. We report approximations as [20
20 20 20 32 32 32 32]. Instead of reporting each set of
approximation values twice as in level A1, we repeat them
four times in level A2 to maintain the original number of
data points (no downsampling effect). We get detail values
atlevel D2 as we did in level D 1. We subtract “new” approxi-
mation values (mimicking the role of the original signal)
from “old" approximation values. Or, [18 18 22 22 26 26 38
38]-[2020202032323232]=[2-222-6-666].
Figure 1 shows these two sets of new approximation (A2)
and detail (D2) coefficients.

Note that A2+D2 = A1 and A1+D1=Signal. One could
report A1 or A2 to approximate the series and reduce the
amount of information that is required. Or one can examine
the details (D1 and D2) to look for abnormal behavior.
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levels. The graphs on the left correspond
to the approximations, and those on the
right correspond to the details. For ease
of viewing, we insert vertical lines, which
show approximate beginning and ending
of days. We reiterate that we are using a
DWT here: Our concern here is to ana-
lyze the consumption data independent
of the temperature data.

We see that different features of the
data are captured at different levels of the
decomposition: While D4 captures the
daily cycle, D3 captures the four similar
toothlike structures that are apparent in
the original series. At level D1, the points
marked by I capture the most abrupt
increases and decreases in consumption
(day 4). At level D2, point II captures the
absolute maximum value of the original
series of 2148.12 kwh at 9:52 p.m. on
day 4. At level D4, point IIl captures the
absolute minimum consumption value of
882.36 kwh at 3:52 a.m. on day 4.

Regarding the choice of the number
of decomposition levels, it appears that
five levels capture most of the relevant
information in the data, whereas further
levels of decomposition contain only
irrelevant noise. Technically, the fifth
level of decomposition requires 2° data
points (which we have, in fact). Decom-
posing into too many levels imposes
more "holes” in the analysis and would
sacrifice accuracy.

Of course, if there were a different
consumption series, the location of I, II,
and IIl would be different, depending on
the traits of the different series. When the
time series change, the results change.
Further, if the series were too massively
long, the DWT would still highlight these
points, since the Haar focuses on what
occurs between two consecutive points
and not what happens among a massive
group of points. One should remember
that, at this stage, no anomaly detection
has taken place. The DWT is simply
a method that summarizes and breaks
down the original series into details and
approximation coefficients. It is true that
the sum of D1+D2+D3+D4+D5+A5
yields the original value of the electricity
consumption series at that particular time
point for all points.

DWT of the Temperature Data

Following the same logic as stated
with the consumption data, we choose
the Haar wavelet to decompose the
temperature series. Again, the task using
this DWT is to recognize key details in

the series independent of the electricity
consumption series. Figure 4 describes
the Haar wavelet decomposition of the
temperature series. The original series
is given as the top graph, and the five
graphs below it represent the five-level
decomposition. The graphs on the left
correspond to the approximations, and
those on the right correspond to the
details. Daily times are inserted, which
approximately correspond to 1 a.m. and
1 p.m. The decomposition of the tem-
perature series reveals several details.

Level D1 captures the sharpestchanges
in temperatures (two points marked by I):
the sharp increase on day 3 (from 61° to
69°) and the sharp fall in temperature on
day 4 (from 68° to 62°). It is also interest-
ing to see what happens at the two points
marked by II, which occur on the second
day around 6 p.m. This peak represents
the difference between the approxima-
tions (on the left side) atlevels 1 and 2 and
atlevels 2 and 3. At this point, the decom-
position highlights the major and sud-
den decrease in temperature during this
time. The approximation differences at
these times become noteworthy. At level
D4, the Haar captures the daily cycle,
highlighting each of the four "hills" in
the original series. Point III captures the
highest peak occurring on the third day,
while point [V captures the lowest point
of the time series.

Monitoring Time Series

Traditionally, the established statistical
method of control charts has been used
for monitoring a process over time for
the purpose of detecting abnormalities.
This technique has been heavily used in
many applications. It provides system-
atic guidelines for showing if a process
is "in control” or “out of control,” where
an in-control process is defined as “a pro-
cess that is operating with only chance
causes of variation present” or one in
which the chance causes of variation
are an inherent part of the process, as
D. C. Montgomery states in Introduction
to Statistical Quality Control. For example,
sources of variability, which cause the
process to be out of control, arise from
operator errors, maladjusted machines,
or other defective bases.

To create a control chart for monitor-
ing the mean of a process, independent
and identically distributed (i.i.d.) samples
are taken every time point from the pro-
cess, and the following are computed:
the process (or sample) mean, the sample

size, the standard deviation of the sam-
ple average, and a constant value for the
Z-statistic. We use these values to com-
pute the upper control limit (UCL) and
lower control limit (LCL), which are the
statistical cutoffs for assessing whether
the process is in or out of control.

Once a new sample arrives, if its mean
exceeds the control limits, an out-of-
control alarm is raised. Such control
charts that abide according to the above
principles are referred to as “Shewhart
control charts,” developed by Walter S.
Shewhart. Conventionally, we use the
constant value of “3" for our Z-statistic,
which further classifies our limits in the
chart as “3-sigma" control limits.

The problem with simple Shewhart
charts is that they assume i.i.d. samples.
Inatime series, we typically have samples
of size 1 (one series of measurements),
and the points are autocorrelated (cor-
related with one another over time).
Furthermore, in many cases we can-
not assume, as Shewhart charts do, that
the distribution of the observations is
normal. On the other hand, we show
in the previous section how wavelets
can be used to analyze autocorrelated
observations without making distribu-
tional assumptions.

A method called "multiscale statisti-
cal process control" (MSSPC), combin-
ing DWT and Shewhart control charts,
was introduced by B. R. Bakshi and is
primarily used in chemical engineering
circles. The idea of this methodology is
to decompose the signal using DWT and
then to monitor the coefficients at each
scale separately using a Shewhart chart.
If there is an alarm at one or more scales,
the original series is reconstructed from
all the coefficients that exceed the thresh-
olds and another Shewhart chart is used
to monitor this reconstructed series. On
the following page, Figure 5 illustrates this
MSSPC process.

MSSPC sounds an alarm if a new
point in the reconstructed series exceeds
the control limits. Next, we illustrate this
method for our two time series.

MSSPC for the
Consumption Data

Figure 3 shows a DWT of the electrical
data using the Haar. The UCL and LCL
are computed at each decomposition
level by using the standard deviation
and mean of the coefficients in that level.
For the approximation level, the mean is
exactly the same as for the original series.
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MSSPC Methodology

Reconstruct new
series from scales
that signaled after
thresholding

Decompose
one series
with desired
wavelet

WT £, SPC(X)

Use a Shewhart control
chart for reconstructed
series; UCL & LCL based
on the scales that
signaled.

Use a Shewhart control chartat each
of the detail levels and coarsest
approximationlevel; UCL & LCL are
level-specific

Figure 5. lllustration of MSSPC algorithm. X represents the initial series. W represents the wavelet decomposition of X. The quantity aX
represents the finest approximation level, while d,X-d, X represent the range of the detail levels. The m* detail level is denoted d_X. SPC
denotes the implementation of a Shewhart control chart at that level. w represents the wavelet reconstruction onto X, which we call X.

Finally, we construct a control chart for the reconstructed signal, which we denote by SPC(X).
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Figure 6. Application of multiscale statistical process control (MSSPC) to electricity consumption data. For each pair of lines, the top dotted
line represents the upper control limit (UCL) and the bottom dotted line represents the lower control limit (LCL).
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Figure 7. Application of multiscale statistical process control (MSSPC) to temperature data. For each pair of lines, the top dotted line at each
level represents the upper control limit (UCL) and the bottom dotted line represents the lower control limit (LCL).

For the detail coefficients, the mean at
each decomposition level is zero. The
standard deviation varies per level and
is estimated from the coefficients in
that level.

Figure 6 shows the MSSPC method
applied to the electricity data. Each
of the four days is labeled as a marker
in the monitoring process. We use
observations only from the first three
days (72 hours) to determine the UCL
and LCL. Doing this allows us to create
tighter UCLs and LCLs in our attempt
to identify outlying coefficients. The top
dotted line in each of the D1-D5 and
A5 levels represents the UCL, which
is given by the mean plus three times
its standard deviation. The dotted line
below it represents the LCL, which is
given by the mean minus three times its
standard deviation. We observe that in
each level, there is no point exceeding
the UCL or LCL. Based on our baseline
stability period, the closest point that
approaches either of the limit lines is

point I, which is the greatest consump-
tion value.

According to the control chart, how-
ever, since it still lies inside the control
limits, it is not classified as a point that is
out of control. Since none of the points
at either of the detail levels or the finest
approximation level falls outside of the
control limits, then none of them falls
outside the limits in the reconstruction
phase. For this series, MSSPC advises us
to zero-out all points at this phase and
conclude that there is no anomalous
behavior attached to this particular pro-
cess of electricity consumption. Level
R1 (the reconstructed series) illustrates
this truth, as all points have been zeroed
out. There are no UCL and LCL at this
level because there is no standard devia-
tion to take into account, since all of
the points at each of the decomposition
levels remain inside the detection limits.
Hence, all sources of variation in this
case are considered to be an inherent
part of the process.

MSSPC for the
Temperature Data

MSSPC is now applied to our tem-
perature data to see if any points are
detected that contribute to an out-of-
control process. Figure 7 illustrates this
process applied to our familiar
temperature data points.

Again, only observations from the
first three days (72 hours) are consid-
ered for determining process stability.
The upper and lower dotted lines are
identified as the UCL and LCL, respec-
tively, as described before. The difference
in this data set is that there are a couple
of points that fall outside of the UCL
and LCL. Points [ and Il exceed the value
of the UCL and LCL for the prescribed
algorithm for this decomposition level.
For this detail, the algorithm gives a UCL
and an LCL of 3.45 units. Points | and
Il are both located at +4 units and -4
units, respectively. This means that in the
reconstruction of the series (R1), these
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coefficients would be retained and added
to any other coefficients at this same
time point that lie outside of the UCL
and LCL of its respective decomposition
detail level. These points are denoted by
Il and V.

Only the finest scale coefficient is
used to compute the reconstructed sig-
nal and detection limit for the recon-
structed signal. So we use information
from the standard deviation in D1 to
calculate the detection limit in R1. The
reconstructed series then provides us
with statistically based reasoning for
concluding that some of the variation in
the temperature series is attributable to
factors other than mere chance.

The Baseline Stability Period

Although wavelets have the ability to
monitor hourly data, as seen in this arti-
cle, real applications typically would have
several days or weeks of data available. In
our case, there is no guarantee that the
temperature points that were labeled as
out of control would continue to be so if
there had been a much longer length of
stability on which the UCLs and LCLs
were based. This, in fact, becomes the
beauty of MSSPC. Although the algo-
rithm is nonnegotiable with respect to
its methodology, it is flexible in that
its results are strictly data-driven, data-
dependent, and data-sensitive. UUCLsand
LCLs change slightly or drastically for a
different baseline period of stability.

A great deal of responsibility lies with
the statistician whose task it is to analyze
the history of the data and to report the
baseline stability period upon which
anomalous behavior will be based. As
one might imagine, it becomes advanta-
geous to revisit the data and update this
stability period every so often to take
into account reasonable data changes
(such as expansion of customer base).

Any nonsignificant points near
but not beyond the control limits will
generally remain nonsignificant even if
there had been a longer series, as long as
the stability period remains unchanged.
Hence, a change in significance or non-
significance of out-of-control points
becomes a function of the change of the
baseline stability period, as opposed to a
function of how long the data series itself
is. Irrespective of the baseline period,
we still rely heavily on the strength of
the Haar wavelet to zero in on sud-
den and quick disparities in consecutive
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time points and signal an appropriate
alarm. As mentioned, the Haar has a
short memory, which actually serves
as the strength in this particular appli-
cation. This wavelet does not depend
necessarily on how long a process has
been “normal” or how long the baseline
stability period is.

There is no definitive formula for cali-
brating this stability threshold. Deter-
mining the length of stability, then,
should be based on a logical sense of
data history within the business (such
as the power company). Care should
be taken in establishing this baseline
period so as to minimize the number of
false positives (alerts that are not really
alerts) and the number of positive fail-
ures (real alerts that are not reported).
Practically, businesses would probably
need to hire statistical consultants to
parse through data and determine an
appropriate length of process stability
based on each particular data set.

Practical Decisions Based
on Results

What do you do with out-of-control
points in the reconstruction phase? After
all, what good is all the statistical talk if
there is no suggested course of action?
Although there are no hard-and-fast
rules concerning what should be done
in cases where statistically based meth-
ods are employed, we can at least make
decisions informed by something other
than gut feeling.

In this analysis, our concern primar-
ily lies with values exceeding the UCL,
since we were monitoring for high elec-
tricity consumption or high tempera-
ture. But we could very well have been
monitoring both variables during the
winter months, in which temperature
values falling below the LCL for a cer-
tain set of data could signal an alarm by
translating into increased consumption
and possible grid system failure. Hence,
using both the UCL and LCL becomes
a key strategy to pinpointing such out-
of-control data points.

Gereater still, situations exist whereby
both limits may not necessarily be
needful. Only a one-sided limit may be
needed, thereby requiring a less extreme
high value for significance. For example,
one application of this method is to the
area of biosurveillance as it relates to
rapid detection of a large-scale bioter-
rorist (such as anthrax) attack. In the

last several years, scholars such as Gold-
enberg et al. have led efforts to moni-
tor nontraditional data sources, such as
sales of various over-the-counter (OTC)
medications. In their study, they explore
situations in which they monitor sales of
certain grocery items that people may
purchase to treat flulike symptoms.

Significant spikes in daily purchase
levels above a prescribed UCL only
(and not below a certain LCL level)
might suggest cause for alarm and may
allow for timely intervention before life-
threatening spores would cause damage
to a person's respiratory system. But the
idea is that through real time (via UPC
bar-code scanning), this data mining and
monitoring technique could be applied
almost immediately to serve the public's
safety interest. In this instance, emphasis
would be placed only on analyzing what
transpires above the UCL, thus lowering
our limit cutoff point and allowing for a
less extreme high value for significance.
Essentially, the cutoff value applied
with MSSPC would depend on the
data and the nature of the process to
be monitored.

The results here show the imple-
mentation of MSSPC with the UCL
and LCL overlaying all the data points.
This simply shows the overall verdict
on which points would have signaled an
alarm. However, in real life, the points
would be identified shortly after hav-
ing been observed or recorded. Once
the point was identified as being out
of control, it would immediately be
reported to an automated system set
up to monitor quality control, which
would be established by the statistician
and the power grid company. In this
new world of technology, little effort
would have to be exerted to devise an
automated monitoring system to do this
and forward information to powers-that-
be in control towers to have them make
decisions concerning what the system
has found to be out-of-control points.

Since outlying aberrant data points
are strictly based on the historical base-
line stability period, we would not need
knowledge of the entire series to zero in
on out-of-control points. The algorithm
identifies and catches the point quickly.
Hence, if the data were being monitored
hourly or daily, the automated system
could report that aberrant behavior
shortly after that hourly or daily obser-
vation occurs, respectively.



In this article, we use a series having
only 96 data points. In real life, we could
conceivably monitor a series with indefi-
nite length. Significance is not based
on how many points are in the series:
As soon as the point falls outside of the
control limits, it is reported as aberrant.
Being out of control is simply based on
“looking back” while "rolling forward.”
The monitoring process would remain
in effect until it needed to be updated
or tweaked. The only tweaking to the
algorithm would be a new change in the
baseline stability period (which would
be data entered by the statistician) and
whether one- or two-sided limits would
be used in MSSPC.

The basic idea, then, becomes to
develop an automated indication sys-
tem that provides an alert or flag to
process operators that an observed value
has exceeded prescribed thresholds and
should be addressed quickly. In our sce-
nario, an alert would be given at the
time point in the temperature series that
lies outside the control limits. What
this would mean is that consumption
should arguably be decreased within a
reasonable time frame of the alert so as
to avoid any possible overloading effect
or blackout.

Of course, one does not make deci-
sions solely on this algorithm. These
statistical methods simply provide an
objective monitoring tool, which could
be used in tandem with other meth-
ods that electric companies already use
to monitor their power grids. Essen-
tially, attacking these kinds of issues
using wavelet-based methods equates to
dealing with such problems proactively
rather than reactively.

Future Directions

This article examines wavelet-based
methods for analyzing and monitor-
ing very frequent time series. Although
these methods require less parameters
and assumptions than other traditional
statistical monitoring methods, there are
a few parameters that must be specified
by the modeler. The first is the choice
of wavelet. Again, the Haar is useful
because of its ability for detecting sud-
den, abrupt changes in the series.

Since the Haar is a wavelet whose
basic function is to average and subtract
consecutive points in the series, it detects
quickly any two consecutive points that

have a large range. For gradual, slower
changes in the series, this wavelet is not
as useful because of its “short memory."
Evenif the overall series is slowly, mono-
tonically increasing or decreasing, the
Haar essentially averages out this effect.
By using more complicated wavelets, we
are able to capture trends and patterns of
the series that are more subtle, like the
situation described above.

The focus, as seen in the two previ-
ous examples, has been on analyzing
each data set independent of other fac-
tors. However, this traditional DWT
approach is limited in that the anal-
ysis does not capture any interaction
between the series when it was clear
that electricity consumption depended,
among other things, on the tempera-
ture. The primary task, then, becomes
to investigate both series together and
to use wavelet decomposition to analyze
both signals simultaneously. Ideally, we
want a method that could be generalized
to more than two series and that could
capture not only relationships between
the series at the same time points (e.g.,
at hour 3) but also relationships of a
lagged nature. This multivariate method,
called "multiscale principal components
analysis” (MSPCA), seeks to capture
the interrelations between the different
series and any abnormalities that might
occur in this relationship. This type of
monitoring becomes crucial in detect-
ing anomalies based on the interplay
between series.

What do you think the results would
be if both series could be monitored
together in a manner that takes account
of their associations with one another
over time? We anticipate that we will
be better able to identify out-of-control
time points when monitoring both series
together. A simultaneous monitoring
system that would take into account
changes in relations between differ-
ent data sources could provide a great
improvement in detecting real outbreaks
and in eliminating false alarms. Such
theory almost begs for great minds in the
statistical field to develop the MSPCA
algorithm and investigate results, com-
paring them to monitoring with univari-
ate monitoring with MSSPC.

These monitoring techniques can
prove invaluable for the statistician. At
the end of the day, however, such
wavelet-based monitoring techniques
described herein can be helpful in

guarding against situations that threaten
normal electricity consumption load
within a city. Proper use of these meth-
ods can contribute to the early detection
of any ensuing electricity consumption
overload and the natural response of
decreasing consumption on the neces-
sary power grid.
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